[image: image1.jpg][image: image2.jpg][image: image3.jpg][image: image4.jpg][image: image5.jpg]
Future Generation Computer Systems 19 (2003) 291–302

Distributed policy-based management of measurement-based

trafﬁc engineering: design and implementation

S. Van den Berghe∗, P. Van Heuven, J. Coppens, F. De Turck, P. Demeester

Department of Information Technology (INTEC), Ghent University, St. Pietersnieuwstraat 41, B-9000 Ghent, Belgium
Abstract
This article discusses an architecture using monitoring feedback as an assisting factor for delivering QoS on packet-based

networks. The handling of this feedback is done in an automated way, through the use of a policy-based management

architecture. For this, a formal model for describing data plane and measurement objects was translated into an XML-based

conﬁguration language. On top of this, a proof-of-concept management architecture was developed and evaluated, using both

a modiﬁed network simulator and enhanced Linux prototype routers.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Trafﬁc engineering; Monitoring; Policy-based management; Real-time management

1. Introduction
1.1. Overview
In a networking environment where applications

become more demanding in terms of performance

requirements, the ability to offer QoS-guaranteed ser-

vices is considered to be an important added value for

Internet Service Providers. On the other hand, because

the network performance model of aggregated packet

streams is hard to determine, it is difﬁcult to provision

the network for every possible QoS requirement (as

expressed in a service level agreement). Admission

control algorithms, constraint-based routing algo-

rithms, etc. all use this limited model (e.g. assumed

residual bandwidth per link), and diagnostic moni-

toring of the actual network behaviour is needed to

check that their results are not too much impaired by

the uncertainties in the network performance model.

To avoid this, a bottom-up approach was developed

∗
Corresponding author.

based on a generic measurement infrastructure, aimed

at fulﬁlling the requirements as described in [9]. By

linking the measurement results with an automated

policy-driven (short timescale) management of tun-

nels in a multipath DiffServ over MPLS [6] environ-

ment, simulation results showed an adequate reaction

to short-term ﬂuctuation in network performance.

This paper describes the next step in this research:

porting the architecture on a Linux-based testbed. For

this, the necessary extensions to the Linux kernel were

developed in our laboratory [8], to allow for the neces-

sary functionality (DiffServ over MPLS, dividing traf-

ﬁc over multiple paths by mapping a set of classiﬁers

and monitoring).

To allow a ﬂexible conﬁguration, a description of

the capabilities of the extended router is translated

into a generic model for tunnel management. In ad-

dition, a proof-of-concept policy-based management

architecture is built, delivering Common Open Policy
Service (COPS)-like [3] paradigms through a CORBA

interface, and conﬁguring the automated decision

process through XML-encoded commands. For other

0167-739X/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 7 3 9 X (0 2) 0 0 1 5 4 - 1

292

S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302
information and operations, like topology analysis

and LSP-information retrieval, the software interacts

with corresponding signalling processes (an OSPF

routing daemon and RSVP-TE signalling daemon,

i.e. RSVP extended for end-to-end lsp conﬁguration).

After the description of the node and management

software functionality and algorithms, some tests

performed on the testbed are discussed. Here, users

are simulated by a set of SmartBits-generated
[12]
streams from different edges of the network, and an

analysis is made as to how the algorithm handles

these trafﬁc ﬂuctuations. The resulting charts are

analysed in terms of improved network performance,

and compared with the same setup in the simulations.

In the third section, a conclusion is drawn from these

practical experiences with a short-term automated

management system, and future extensions are looked

at. These include a generalization to policy-based tun-

nel management (i.e. application in overlay IP-in-IP

networks or secured VPN tunnels) and even in sample

service deployment without tunnelling mechanisms.

1.2. Related work
The use of monitoring to optimize network provi-

sioning in near real-time is under study within several

major research projects. The concept of a two-level

trafﬁc engineering was used in the TEQUILA ap-

proach [13]. Here, a major part of the provisioning was

done based on speciﬁcations (SLSs) provided by the

users describing the requested service. In order to han-

dle ﬂuctuations in the network (occurring due to the

probabilistic nature of the SLS speciﬁcation and pro-

visioning algorithms), monitoring information is given

as an input to admission control, queue management

and tunnel management. The approach taken in this

paper simpliﬁes this model (by restricting itself to tun-

nel management), and on the other hand enlarges the

role of this dynamic part of network management. The

concept of a uniﬁed measurement architecture and its

relationship with trafﬁc engineering will also be inves-

tigated during a recently started IST project SCAMPI.

The concepts of policy-based management is also

being reﬂected in the work done in the IETF’s

Resource Allocation Protocol (RAP) working group.

Especially, the recent standardization of a feedback

framework that allows policy decisions to be taken

based on status reports from the network provides a

powerful framework for adaptive network manage-

ment. Publications on the subject of adaptive manage-

ment and trafﬁc engineering were published at recent

PAM and Infocom conferences [1,4].
2. Architecture and algorithms
As mentioned in Section 1, a policy-based man-

agement approach was chosen to drive the short-term

trafﬁc engineering. This implies that each network

element has a Policy Enforcement Point (PEP), which

controls the functionality and executes operations on

the network element. The decision to perform an op-

eration is taken by a more central Policy Decision
Point (PDP), which will use information reported by

the PEPs. As opposed to the classic Internet Engineer-
ing Task Force (IETF) approach, the PDP is not cen-

tralized, but distributed over all the ingress nodes (to

take decisions for that ingress locally), and a PEP can

communicate with multiple PDPs (more speciﬁcally,

multiple PDPs can use reports from a single PEP in

their decision process), as depicted in Fig. 1.
Creating new conﬁgurations, and performing oper-

ations on them, is done by instantiating and manipu-

lating objects (e.g. representing an LSP) in the PEPs.

Reporting can be done in two ways: solicited and un-

solicited. In the ﬁrst mode, a report is immediately

sent as a response to an execution performed in a PEP.

This type of report can be sent from PEP to PDP or be-

tween PEPs (e.g. a PEP on the ingress of an LSP, may

request statistics from the egress PEP). Unsolicited re-

ports are sent asynchronously, and can only be going

from PEP to a PDP.

In order to describe the actions, a formal model is

made, which describes the different entities on which a

PEP can execute operations. In the current architecture

these can be divided in two major categories, namely

data plane and monitoring:

1.
Data plane. At the data plane level, packets trav-

elling through the ingress node, encounter three

packet-processing steps. As the ﬁrst step, the

classiﬁer will map a packet onto an LSP, and de-

termine the per hop behaviour (PHB) it should

receive in the network. After this, the packet is en-

capsulated in an MPLS packet (in the LSP block)

and queued/scheduled on the output according to

[image: image6.jpg][image: image7.jpg]
S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302
Fig. 1. PDP–PEP–network relationship.

293

a given PHB. The role of the PDP decision will be

to manage the way classiﬁers are bound to LSPs.

In order to do so an additional semantic class, the

LSP group, is introduced in the model. An LSP

group keeps track of both the corresponding set of

the classiﬁers and LSPs for each PHB and for each

egress. Each LSP in the LSP group is also tagged

with a weight variable, which is used in the algo-

rithm to keep track of the performance history of

the LSP (a higher weight means less performance

problems in the past). A more formal description

of this model is given in Fig. 2.
Fig. 2. Model data plane.

[image: image8.jpg][image: image9.jpg]
294

S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302
It is important to note that an LSP can belong to
for the UDP test stream generated by the synthetic

multiple LSP groups. This ability allows the sup-
source that is installed at the source PEP. The

port of both L-LSPs (where the trafﬁc of an LSP
triplet (source address, destination address and

is mapped to a single PHB, deﬁned by the label)
destination UDP port) uniquely deﬁnes the test

and E-LSPs (where the mapping on the PHB is
session. Observe that in certain circumstances (e.g.

not given by the label, but by another ﬁeld—the
to actively monitor an LSP), the injected packets

so-called exp-ﬁeld—in the MPLS header). In the
need to be classiﬁed, in which case a classiﬁer for

second case, a single LSP can carry trafﬁc of mul-
this triplet is installed. This conﬁguration approach

tiple service classes, so it belongs to multiple LSP
replaces the control-plane signalling as deﬁned in

groups.
[11].
2.
Monitoring. One of the authors worked in the IETF

on the speciﬁcation of architectural requirements

for getting useful measurements for performing

trafﬁc engineering, resulting in [9]. This document

describes both the methodology requirements and

the metric involved in measurement for trafﬁc en-

gineering. Two main types of measurements have

been identiﬁed. The ﬁrst one is based on keeping

statistics inside queues, forwarding engines, etc.

Getting the results offered by these counters is

called a passive
measurement. The class offering

this is modelled as a
passive reporter, which is

connected to a data plane object for getting the

actual counters (in the current implementation,

“octets received” counters are offered for classi-

ﬁers, LSP and PHB objects) (Fig. 3).
The second option is to perform a “ping”-like

measurement: inject packets into a network as a

test stream from a source to a destination, and anal-

yse the quality with which they were transported.

In this work (roughly based on the concepts in

[2]), within an active monitor the sender side will

be described as a synthetic source, and the receiver

Both active and passive reporters will submit

their results, at conﬁgured read-out intervals, to an

analysing class, referred to as evaluators. Not only

does this allow for a ﬂexible analysis, but it also

improves scalability of monitoring (by pushing

measurement aggregation and analysis as close to

the wire as possible).

The evaluator can analyse measurement results

in two operational modes (“greater or equal” for

upper threshold checking or “lower than” for lower

thresholds) and can operate in different ways. In

the current implementation, three different types

are supported. The ﬁrst one, a
ﬁxed
classiﬁer

will be triggered whenever de metric is bigger

(or smaller) then a conﬁgured value. The second

type, a
linear classiﬁer will be triggered accord-

ing to a probability
p(x) for measurement result

x, upper border
u
and lower border
l, as given

for upper threshold checking in
Eq. (1). Finally,

a pseudo-evaluator is also available which will

simply report every value (e.g. for diagnostics).

 0,
x ≤ l,

an active reporter. In order to conﬁgure the active

measurement, the reporter is installed by the des-

p(x) =

x − l

 h − l, h≤ x < l,

(1)

tination PEP, electing a new free destination port

Fig. 3. Model monitoring.

1,

x > h.

S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302

295

2.1. Operations
Given these building blocks, actions are deﬁned

by XML-encoded strings that are transported using

a CORBA interface on the PDP and PEP. At the

PEP side, this interface offers the functions
install
for adding new actions (and of course also a function

to remove them) and execute for actually performing

them. Once installed, an action is assigned an object

identiﬁcation by the PEP, for use in later reference. The

format of this identiﬁer is <object routerId=r
objectId=o>. Other actions are described by link-

ing object identiﬁers together in action XML strings

(observe that router identiﬁers are the same for both

operands, since the operations are performed inside

the PEP):

<action oper=operation>

<object routerId=r objectId=o1>

<object routerId=r objectId=o2>

</action>

The most important actions used in the current work

are:

•
lspgroup → add(lsp or classiﬁer): adds a classiﬁer

or lsp to an lsp group (and corresponding remove

operations).

•
lspgroup
→
decr(lsp
l): takes a classiﬁer away

from l, decreases the weight of l, and re-maps the

classiﬁer to the lsp with the highest weight (and

different from l) in the LSP group.

•
lspgroup
→
incr(lsp
l): increases the weight

of l.

•
object → show: used on any object, to immediately

report back conﬁguration information.

•
object → showstats: used on any object, to imme-

diately report back statistics information.

The increase/decrease functionality is used to manage

the amount of trafﬁc on an LSP, and the two show

functions are for triggering solicited feedback. An ex-

ception to the action speciﬁcation format is the
cre-
ate
operation for actually creating new objects of a

certain type (e.g. LSP, Classiﬁer, etc.). The speciﬁca-

tion describes object speciﬁc elements (e.g. path of the

LSP). The creation of objects, and operations on them

uses the same structure and both yield a new object

identiﬁer:

<action oper=‘‘create’’ object=Object
Type>

Speciﬁcation
</action>

The PDP side offers a
report interface operation,

which in this case is only called if an evaluator is

triggered to send an unsolicited report. There is also

an interface operation to deﬁne rules, which declares

a binding between two object identiﬁers at the PDP

level: one to identify the rule triggering object (e.g. an

evaluator) and one to identify the action to be taken

(which can either be an operation on an existing object

or the creation of a new one):

<action oper=operation>

<trigger routerId=r objectId=o1>

<object routerId=r objectId=o2>

</action>

The top-level auxiliary ﬁle: tsvdbels2.au.

2.2. Algorithms
As an example of the possible applications of the

means described above, we ﬁrst describe the algo-

rithm used in later experiments. Per LSP, two rules

and corresponding actions are deﬁned. To each LSP,

two evaluators are attached: a ﬁxed one for a lower

threshold and a linear one for upper threshold check-

ing, both using input from a passive monitor watch-

ing end-to-end tunnel loss (i.e. a passive reporter at

the ingress, which requests solicited usage report from

the egress, and calculates difference between sent and

received).

If for a given LSP the upper threshold evaluator is

triggered, its weight is decreased and one classiﬁer is

swapped to another LSP, selected by the maximum

weight. Secondly, if the monitored loss of an LSP is

below the lower threshold, its weight is increased. In

this way, the weight represents how willing an LSP

is to take extra classiﬁers from other LSPs that have

become overloaded, and do nothing if everything on

the network seems all right. To summarise, the deci-

sion process is described by the algorithm given below

(using the operations deﬁned previously), where the

LSPs are all part of the LSP group G = {L1, . . . , Ln}.

Every measurement result is checked against evalua-

tors eu(i) and el(i), both sending a report to the ingress

[image: image10.jpg]
296

PDP when triggered:

ωi
= 0,
∀i ∈ G

S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302
MPLS label at the egress (out-segment of the LSP), it

continues on a normal IP path. Passive monitors are

looking at trafﬁc entering and leaving the LSP (using

a solicited report from the ingress to the egress).

start evaluator eu(i) for lsp li , ∀i∈G
start evaluator el(i) for lsp li , ∀i∈G
loop
if condition eu (i) arrived then
G → decr(li)

else if condition el (i) arrived then
G → incr(li)

end if
end loop
3. The enhanced Linux router
The algorithm below was deployed in both a simula-

tion and a Linux-based router testbed. The Linux ker-

nel provides an advanced trafﬁc control to implement

DiffServ PHBs natively, and through an extension,

MPLS support. However, the combination of both was

not available. Furthermore, we needed a multi-ﬁeld

classiﬁcation before making a forwarding decision (in

order to drive the mapping of trafﬁc on an LSP). Since

the classic DiffServ-on-Linux classiﬁers are in the out-

put part of the network stack, the ﬁrewalling code was

reused to achieve these goals. Together with the im-

plementation of RSVP-TE signalling, this extension

was published to the open source community.

To summarise, the enhanced Linux router as shown

in Fig. 4, uses the result of ﬁrewalling to put pack-

ets on the right LSP, with the correct outgoing label

and exp-ﬁeld (in-segment). This is then used to select

the PHB throughout the network. After popping the

In the current approach, a choice is made to keep

most of the complexity of the architecture at the edges

of the network. The core-PEP is limited to the man-

agement and reporting of its local trafﬁc control, and

is a light-weight implementations of its much more

powerful cousins at the edge.

Operations in the core, like LSP establishment are

performed through signalling. This implies that PEPs

must communicate with the corresponding signalling

blocks, which in our case are an OSPF daemon (for

topology discovery) and an RSVP-TE signalling dae-

mon (for LSP control).

4. Results
4.1. Environment
To validate this architecture, the simulator ns-2 [10]
was modiﬁed and used. The PEP–PDP functionalities

were written outside the simulator (in order to be able

to reuse the same codebase for the testbed) and com-

munication between management and the simulator

was done using CORBA-calls. The topology and con-

ﬁguration used is shown in Fig. 5. This contains ﬁve

nodes (shown as 0 through 4) that actually constitute

the network under test. In this network the capacity

of all links, except for one, is big enough to oper-

ate loss-free with the trafﬁc generated (all 100 Mb/s

links). The link (0,4) is conﬁgure to be the bottleneck

Fig. 4. Enhanced Linux router.

[image: image11.jpg]
S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302
Fig. 5. Topology and setup used in this evaluation.

297

in the network, capable of handling 10 Mb/s. These

links are part of two distinctive LSPs: LSP 101 follow-

ing the shortest path (0–4–3) and LSP 102 following

(0–1–2–3). Two passive monitors are installed, exam-

ining the tunnel statistics related to these lsps.

In this conﬁguration, trafﬁc is generated by 20 ap-

plications. Corresponding to these applications, classi-

ﬁers are installed and added to an LSP group together

with the two LSPs. Trafﬁc is generated by the appli-

cations during 15 s, followed by a 3 s off-period. With

each ‘trafﬁc burst’ the rate per application is increased

In consecutive steps of 0.10 Mb/s, generating a total

trafﬁc of between 11 and 15 Mb/s in steps of 2 Mb/s

(this is repeated at every test run, so for instance traf-

ﬁc mapping decisions taken at 11 Mb/s are
not reset

after the burst). After each burst, the cumulative loss

of all the applications for that burst is evaluated. Ini-

tially, all trafﬁc is mapped to the shortest path LSP.

A corresponding experiment was performed on a

testbed of Linux routers, equipped with the enhanced

Linux kernel as described earlier. A Smartbits 2000

system was used for trafﬁc generation, generating the

same pattern as the trafﬁc in the simulator (except

for the fact that no off-time was predeﬁned, since the

Smartbits needs some time by itself to read-out results

and conﬁgure the hardware for the next burst).

4.2. Results
Not running any re-mapping algorithms, this leads

to the result shown in Figs. 6 and 7, using one-way

loss as the evaluated metric. This chart also contains

the result of the same test on a Linux testbed (the same

topology as the one used for the simulator). As a ref-

erence, the graph also shows the test without mapping

to an LSP on the testbed. This performance shows

that introducing MPLS deteroriates the performance

by only a small factor, and all three are close to the the-

oretical value (e.g. sending 15 Mb/s on a 10 Mb/s link,

theoretically yields a loss of 33.33, 32.9% in the plain

set-up—thanks to some spare room in the queues—
and 33.42% by using MPLS).

For each of the LSP, two evaluators were then cre-

ated with corresponding rules. This resulted in a con-

ﬁguration in which the weight was increased if the

loss was smaller than 0.01% and was decreased (in-

cluding a re-mapping of trafﬁc) according to Eq. (1).
with upper and lower bounds of, respectively, 2 and

5% one-way loss. In the experiment, the read-out pe-

riod of the passive reporters providing the input was

twice per second.

A ﬁrst striking observation is that the simulator

shows a much greater performance improvement than

with the real testbed experiments. There are several

reasons for this:

•
When transporting measurement results to the eval-

uators, during the evaluation, during the decision

process, etc. the simulator is actually stopped, while

in the real testbed this happens asynchronously. As

a result, the decision to swap trafﬁc has a much later

impact on the real testbed.

•
Re-mapping trafﬁc is disruptive on the testbed.

While mapping trafﬁc from one LSP on another is

[image: image12.jpg][image: image13.jpg]
298

S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302
Fig. 6. Reference performance.

done through modiﬁcation in the simulator, in the

testbed this is done through a remove–add com-

bination of ﬁrewall rules. In between the removal

and addition, trafﬁc is dropped before entering

the LSP. Hence, the end-to-end application-level

performance deteriorates, but the LSP-loss is not

touched.

•
Generally speaking, the testbed implementation is

currently a proof-of-concept implementation to val-

idate functionality. It makes heavy use of CORBA-

calls, XML-parsing, debugging output, ﬂat ﬁle input

and output, etc. As a result, the effect of the ﬁrst

bullet point is even worse.

Despite these practical obstacles, the testbed results

clearly show a performance improvement (although it

is not as impressive as the simulation results) by re-

lying on measurement-based, short-term trafﬁc engi-

neering.

A second conclusion can be drawn from the evalua-

tion with different read-out times for each rate (Fig. 8).
Here, in the simulation environment, the experiment

is done with a read-out period varying between four

times per second (so 0.25 s between each poll) and

every 2.5 s.

The improved performance with shorter inter-mea-

surement times is quite logic. It means more probes,

Fig. 7. Simulator and testbed performance improvement.

[image: image14.jpg][image: image15.jpg]
S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302
Fig. 8. Simulator and testbed performance improvement.

299

and as a result more opportunities to react and switch

trafﬁc to a less loaded LSP. On the other hand, it of

course increases the burden of evaluating the delays.

5. Future applications
5.1. Generic model for tunnel management
While MPLS is currently being used for creating

alternative paths in the network, the approach is easily

implemented on top of other tunnelling mechanisms,

like Generic Routing Encapsulation (GRE [5]) or se-

cured VPN tunnels. Generally speaking, the model

shown in Fig. 2 can be reused, with the LSP replaced

with a more generic tunnel representation. As an ex-

ample of this approach, a generic model (Fig. 9) is

currently under study, where the tunnel is abstracted

through the use of virtual interfaces, and where the

tunnel encapsulation of trafﬁc is transparent for the

ingress classiﬁcation. Mapping trafﬁc to a tunnel is

then transformed to setting a route via an interface.

In Linux, virtual interfaces are supported for a num-

ber of mechanisms including MPLS, GRE and PPP.

Fig. 9. Generalized model.

[image: image16.jpg]
300

S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302
Furthermore, several advanced routing mechanisms

(like source routing and hashing-based multipath) are

available in the ‘off-the-shelf’ Linux kernels [7], and

can be used to map trafﬁc on the interfaces.

For monitoring, the generic nature of this model

cannot be maintained so easily, due to the fact that not

all tunnels are bi-directional. In the case of MPLS for

instance, there is a virtual interface at the ingress, but

not at the egress. In this case, the transport of statistics

(e.g. the ‘octets received’) from egress to ingress can

be done either by the tunnel management block, or

through more low-level functions (e.g. by attaching

it as an explicit congestion notiﬁcation to the regular

messages RSVP refresh messages).

5.2. Other algorithm inputs
In all the previous sections, unidirectional end-to-

end loss has been used as a metric to drive the trafﬁc

mapping and the emphasis was on the management

of tunnels. However, other metrics and applications

can beneﬁt from the given approach. For instance in

the network shown in
Fig. 10
in which a network

domain is depicted that peers with two other domains.

If this peering is (e.g. contractually) limited to a certain

bandwidth, the domain can use the residual bandwidth

at each of the peering points to direct the mapping

of trafﬁc entering the network, destined to a subnet

advertised by both peers.

This mapping does not even require a tunnel mech-

anism to be used, but can be done by selecting differ-

ent ‘gateways’ at the domain ingress.

Fig. 10. Using residual bandwidth at peering points.

6. Conclusions
In this paper, a short-term trafﬁc engineering was

presented, based on the policy-based management

paradigm. A formal model and corresponding con-

ﬁguration language was described. This allowed

for a ﬂexible proof-of-concept software architec-

ture to be built, both on top of a simulator and on

a Linux-based router testbed. In the latter case, the

necessary modiﬁcation done on the Linux router was

described.

From the experiments it was shown that the algo-

rithm, although very simple in nature, was able to han-

dle some short-term ﬂuctuations. On the other hand,

by comparing the results retrieved from simulation, to

those in real-life, it became clear that more has to be

done than just a proof-of-concept implementation in

order to achieve a more optimal performance enhance-

ment (although already a signiﬁcant improvement was

made).

In a last section, it was shown that the concepts, al-

though now aimed at MPLS tunnels, could be applied

to a wider range of problems dealing with congestion

avoidance.

As presented, the current evaluated environment re-

lies only on the reactive use of monitoring feedback

in a local (ingress only) node. Since no information is

exchanged between these processes, the network-wide

stability is not guaranteed. As a result another level

of control needs to be introduced, which can perform

trafﬁc engineering on a longer timescale, and which

uses—amongst other information—feedback from the

architecture presented to do so.

Acknowledgements
The authors would like to thank the participants

in the TEQUILA project for the interesting discus-

sions concerning the subject of two-level trafﬁc en-

gineering. The authors would also like to thank Wai

Sum Lai, Blaine Christian and Richard W. Tibbs for

co-developing the basic monitoring ideas within the

IETF. Part of this work has been supported by the

Flemish Government through IWT scholarships and

by the Information Society Technologies (IST) Tequila

project, which is partially funded by the European

Commission.

[image: image17.jpg]
S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302

301

References
[1] J.L. Alberi, T. Chen, S. Khurana, A. Mcintosh, M. Pucci, R.

Vaidyanathan, Using real-time measurements in support of

real-time network management, in: Proceedings of the Passive

and Active Monitoring Workshop, 2001.

[2] R. Cole, R. Dietz, C. Kalbﬂeisch, D. Romascanu, A

framework for synthetic sources for performance monitoring,

Internet Draft, Internet Engineering Task Force, Work in

Progress, 2001.

[3] D. Durham, et al., The COPS (Common Open Policy Service)

Protocol, RFC 2748, Internet Engineering Task Force, 2000.

[4] A. Elwalid, C. Jin, S. Low, I. Widjaja, MATE: MPLS

adaptive trafﬁc engineering, in: Proceedings of the Infocom,

Anchorage, Alaska, April 2001.

[5] D. Farinacci, T. Li, S. Hanks, D. Meyer, P. Traina, Generic

routing encapsulation (GRE), RFC 2784, Internet Engineering

Task Force, March 2000.

[6] F. Le Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen,

R. Krishnan, P. Cheval, J. Heinanen, MPLS support of

differentiated services, Internet Draft, Internet Engineering

Task Force, Work in Progress, April 2001.

[7] B. Hubert, et al., Linux advanced routing and trafﬁc con-

trol howto.
http://www.Linuxdoc.org/HOWTO/Adv-Routing-
HOWTO.html.
[8] INTEC Ghent University, DiffServ Extensions for MPLS for

Linux. http://dsmpls.atlantis.rug.ac.be.

[9] W. Lai, B. Christian, R. Tibbs, S. Van den Berghe, A frame-

work for internet trafﬁc engineering measurement, Internet

Draft, Internet Engineering Task Force, Work in Progress,

2001.

[10] Network Simulator (ns-2). The ns Manual. The VINT Project.

http://www.isi.edu/nsnam/ns/doc/index.html.
[11] S. Shalunov, B. Teitelbaum, M. Zekauskas, A one-way delay

measurement protocol, Internet Draft, Internet Engineering

Task Force, Work in Progress, 2001.

[12] Spirent, Smartbits 2000. http://www.netcomsystems.com.
[13] P. Trimintzios, I. Andrikopoulos, G. Pavlou, P. Flegkas, D.

Grifﬁn, P. Georgatsos, D. Goderis, Y. T’Joens, L. Georgiadis,

C. Jacquenet, R. Egan, A management and control architecture

for providing IP differentiated services in MPLS-based

networks, IEEE Commun. Mag. 39 (5) (May 2001).

S. Van den Berghe
graduated in Com-

puter Science at the University of Gent in

1999. In July 1999, he joined the Broad-

band Communications Networks Group

and he is preparing a PhD in January

2001, he was granted an IWT scholar-

ship. His research interests are mainly

the area of Quality of Service and Traf-

ﬁc Engineering in IP. He is focusing

on measurement-based Trafﬁc Engineer-

ing in a DiffServ/MPLS/MultiPath environment. He is active

in the IST TEQUILA project, development of DiffServ sup-

port for MPLS in the Linux community and has published,

next to several papers, an Internet Draft on the requirements

for measurement architectures for use in Trafﬁc Engineered IP

Networks.

P. Van Heuven
graduated in Computer

Science at the University of Gent in 1998.

His graduation thesis (“Computer busses

and caches in future processors”) exam-

ined the beneﬁts of pre-fetching in fu-

ture processors by means of simulation.

In August 1998, he joined the Broadband

Communications Networks Group and he

is preparing a PhD. In January 1999, he

was granted an IWT scholarship. His re-

search interests include mainly the area of Quality of Service,

Trafﬁc Engineering and resilience in IP and MPLS. He worked

on the ACTS Ist ACI project and is currently working on the

Ist TEQUILA project. He is also the maintainer of the open

source “RSVP-TE daemon for DiffServ over MPLS under Linux”
project.

J. Coppens
joined the IBCN research

group in 2001 after studying computer

science at Ghent University. He special-

izes in (Linux) Trafﬁc Control mecha-

nisms and is responsible for the Linux

part of a generic adaptation layer (GAL),

an abstraction layer for different router

platforms, in the IST Tequila project. His

research interests are Quality of Service,

Trafﬁc Engineering, network monitoring

and distributed computing. While doing a PhD on monitoring in

Content Distribution Networks, he is currently active in the IST

Scampi project.

F. De Turck received his MSc degree in

Electronic Engineering from the Ghent

University, Belgium in June 1997. In May

2002, he obtained the PhD degree in Elec-

tronic Engineering from the same uni-

versity. From October 1997 to Septem-

ber 2001, Filip De Turck was research

assistant with the Fund for Scientiﬁc Re-

search Flanders, Belgium (FWO-V). At

the moment, he is afﬁliated with the De-

partment of Information Technology of the Ghent University as

a post-doctoral researcher of the FWO-V. His research interests

include scalable software architectures for telecommunication net-

work and service management, performance evaluation and opti-

mization of routing, admission control and trafﬁc management in

telecommunication systems.

302

S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302
P. Demeester
received his PhD degree

from the University of Gent at the De-

partment of Information Technology (IN-

TEC) in 1988. He became professor at the

University of Gent where he is teaching

telecommunication networks and where

he is responsible for the IBCN research

group. He is senior member of IEEE and

he was or is member of several techni-

cal program committees. He was involved

in about 15 European ESPRIT, RACE and ACTS projects. He

was co-editor of two special issues of the IEEE Communications

Magazine: “Optical Networks Research in Europe, 1997” and “Sur-

vivable Communication Networks, 1999”. He was chairman of the

First International Workshop on the design of Reliable Commu-

nication Networks (DRCN98) and he is member of the editorial

board of the journals: “OPTICAL NETWORKS MAGAZINE” and

“JOURNAL PHOTONIC NETWORK COMMUNICATIONS”. He

has published over 300 articles and papers in the ﬁeld of op-

toelectronics and broadband networks. His current interests are

related to broadband communication networks (IP, ATM, SDH,

WDM, access) and include network planning, network and ser-

vice management, telecommunications software, inter-networking,

etc.

